EE 330 Lecture 26

- Small Signal Analysis
- Small Signal Models for MOSFET and BJT

Spring 2024 Exam Schedule

Exam $1 \quad$ Friday Feb 16
Exam 2 Friday March 8
Exam 3 Friday April 19
Final Exam Tuesday May 7 7:30 AM - 9:30 AM

Small-Signal Analysis

\downarrow

Nonlinear
Analysis

- Will commit next several lectures to developing this approach
- Analysis will be MUCH simpler, faster, and provide significantly more insight
- Applicable to many fields of engineering

"Alternative" Approach to small-signal analysis of nonlinear networks

Review from Last becture

This terminology will be used in THIS course to emphasize difference between nonlinear model and linearized small signal model

Small-signal and simplified dc equivalent elements

dc Voltage Source Small-signal and simplified dc equivalent elements

Element

Bipolar
Transistors

ss equivalent

Simplified dc
equivalent

Small-Signal Model of 4-Terminal Network

Mapping is unique (with same models)

Small Signal Model

$$
\begin{aligned}
& \boldsymbol{i}_{1}=y_{11} \boldsymbol{\omega}_{1}+y_{12} \boldsymbol{\omega}_{2}+y_{13} \boldsymbol{\omega}_{3} \\
& \boldsymbol{i}_{2}=y_{21} \boldsymbol{\omega}_{1}+y_{22} \boldsymbol{u}_{2}+y_{23} \boldsymbol{u}_{3} \\
& \boldsymbol{i}_{3}=y_{31} \boldsymbol{\omega}_{1}+y_{32} \boldsymbol{\omega}_{2}+y_{33} \boldsymbol{u}_{3}
\end{aligned}
$$

where

$$
\mathbf{y}_{\mathrm{ij}}=\left.\frac{\partial \mathbf{f}_{\mathbf{i}}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right)}{\partial \mathbf{V}_{\mathbf{j}}}\right|_{\overline{\mathbf{v}}=\overline{\mathbf{v}}_{\alpha}}
$$

- This is a small-signal model of a 4-terminal network and it is linear
- 9 small-signal parameters characterize the linear 4-terminal network
- Small-signal model parameters dependent upon Q-point !
- Termed the y-parameter model or "admittance" -parameter model

Review from Last Lecture

A small-signal equivalent circuit of a 4-terminal nonlinear network
(equivalent circuit because has exactly the same port equations)

$$
y_{i j}=\left.\frac{\partial \mathbf{i}_{i}\left(V_{1,} V_{2,} V_{3}\right)}{\partial V_{j}}\right|_{\vec{V}=\vec{V}_{Q}}
$$

Equivalent circuit is not unique Equivalent circuit is a three-port network

Review from Last Lecture
Consider 3-terminal network

Small-Signal Model

$$
\begin{aligned}
& \dot{\boldsymbol{4}}=y_{11} \boldsymbol{v}_{1}+y_{12} \boldsymbol{v}_{2}+y_{13} \boldsymbol{v}_{3} \\
& \boldsymbol{i}_{2}=y_{21} \boldsymbol{v}_{1}+y_{22} \boldsymbol{v}_{2}+y_{23} \boldsymbol{v}_{3} \\
& \boldsymbol{i}_{3}=y_{31} \boldsymbol{v}_{1}+y_{32} \boldsymbol{v}_{2}+y_{33} \boldsymbol{v}_{3}
\end{aligned}
$$

$$
\mathbf{y}_{\mathrm{ij}}=\left.\frac{\partial \mathbf{f}_{\mathbf{i}}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right)}{\partial \mathbf{V}_{\mathbf{j}}}\right|_{\overline{\mathrm{v}}=\overline{\mathbf{V}}_{\mathrm{a}}}
$$

$$
\begin{aligned}
& \dot{\psi}=g_{1}\left(\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \mathcal{V}_{3}\right) \\
& i_{2}=g_{2}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right) \\
& i_{3}=g_{3}\left(\boldsymbol{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3}\right)
\end{aligned}
$$

Small-Signal Model

$$
\begin{gathered}
\mathbf{y}_{\mathrm{ij}}=\left.\frac{\partial \mathbf{f}_{\mathrm{i}}\left(\mathbf{V}_{1}, \mathbf{V}_{2}\right)}{\partial \mathbf{V}_{\mathrm{i}}}\right|_{\mathrm{V}=\bar{v}_{\mathrm{a}}} \\
\overline{\mathbf{v}}=\binom{\mathbf{v}_{\mathbf{1 0}}}{\mathbf{v}_{20}}
\end{gathered}
$$

$$
\begin{aligned}
& \dot{\boldsymbol{i}}_{1}=y_{11} \boldsymbol{v}_{1}+y_{12} \boldsymbol{v}_{2} \\
& \boldsymbol{i}_{2}=y_{21} \boldsymbol{v}_{1}+y_{22} \boldsymbol{v}_{2}
\end{aligned}
$$

- Small-signal model is a "two-port"
- 4 small-signal parameters characterize this 3-terminal linear network
- Small signal parameters dependent upon Q-point

Review from Last Lecture
Consider 2-terminal network

Small-Signal Model

$$
\left.\begin{array}{l}
\dot{\boldsymbol{q}}_{1}=g_{1}\left(\boldsymbol{v}_{1}, v_{2}, \boldsymbol{v}_{3}\right) \\
i_{2}=g_{2}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right) \\
i_{3}=g_{3}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)
\end{array}\right\}
$$

$$
\begin{aligned}
& \boldsymbol{i}_{1}=y_{11} \boldsymbol{v}_{1}+y_{12} \boldsymbol{v}_{2}+y_{13} \boldsymbol{v}_{3} \\
& \boldsymbol{i}_{2}=y_{21} \boldsymbol{v}_{1}+y_{22} \boldsymbol{v}_{2}+y_{23} \boldsymbol{v}_{3} \\
& \boldsymbol{i}_{3}=y_{31} \boldsymbol{v}_{1}+y_{32} \boldsymbol{v}_{2}+y_{33} \boldsymbol{v}_{3}
\end{aligned}
$$

$$
\mathbf{y}_{\mathbf{i j}}=\left.\frac{\partial \mathbf{f}_{\mathbf{i}}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}\right)}{\partial \mathbf{V}_{\mathbf{i}}}\right|_{\overline{\mathrm{v}}=\overline{\mathbf{V}}_{\boldsymbol{o}}}
$$

Consider 2-terminal network

Small-Signal Model

$i_{1}=y_{11} \boldsymbol{V}_{1}$

$$
y_{11}=\left.\frac{\partial f_{1}\left(V_{1}\right)}{\partial \mathrm{V}_{1}}\right|_{V=v_{0}}
$$

$$
\bar{V}=V_{10}
$$

A Small Signal Equivalent Circuit

Small-signal model is a one-port
This was actually developed earlier !

How is the small-signal equivalent circuit obtained from the nonlinear circuit?

What is the small-signal equivalent of the MOSFET, BJT, and diode ?

Small Signal Model of MOSFET

3-terminal device

4-terminal device

MOSFET is actually a 4-terminal device but for many applications acceptable predictions of performance can be obtained by treating it as a 3-terminal device by neglecting the bulk terminal

In this course, we have been treating it as a 3-terminal device and in this lecture will develop the small-signal model by treating it as a 3-terminal device

When treated as a 4-terminal device, the bulk voltage introduces one additional term to the small signal model which is often either negligibly small or has no effect on circuit performance (will develop 4-terminal ss model later)

Small Signal Model of MOSFET

Large Signal Model

$$
I_{G}=0
$$

MOSFET is usually operated in saturation region in linear applications where a small-signal model is needed so will develop the small-signal model in the saturation region

Small Signal Model of MOSFET

$$
\begin{aligned}
\mathrm{I}_{1}=\mathrm{f}_{1}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right) & \Longleftrightarrow \mathrm{I}_{\mathrm{o}}=0 \\
\mathrm{I}_{2}=\mathrm{f}_{2}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right) & \Longleftrightarrow \mathrm{I}_{0}=\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\text {os }}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{o s}\right) \\
\mathrm{I}_{\mathrm{G}} & =\mathrm{f}_{1}\left(\mathrm{~V}_{\mathrm{os}}, \mathrm{~V}_{\mathrm{os}}\right) \\
\mathrm{I}_{0} & =\mathrm{f}_{2}\left(\mathrm{~V}_{\mathrm{os}}, \mathrm{~V}_{\mathrm{os}}\right)
\end{aligned}
$$

Small-signal model:

$$
\begin{array}{cc}
\mathrm{y}_{\mathrm{ij}}= & \left.\frac{\partial \mathrm{f}_{\mathrm{i}}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right)}{\partial \mathrm{V}_{\mathrm{j}}}\right|_{\nabla=V_{\mathrm{a}}} \\
\mathrm{y}_{11}=\left.\frac{\partial \mathrm{I}_{\mathrm{G}}}{\partial \mathrm{~V}_{\mathrm{GS}}}\right|_{V=V_{\mathrm{o}}} & \mathrm{y}_{12}=\left.\frac{\partial \mathrm{I}_{\mathrm{G}}}{\partial \mathrm{~V}_{\mathrm{DS}}}\right|_{V=V_{\mathrm{o}}} \\
\mathrm{y}_{21}=\left.\frac{\partial \mathrm{I}_{\mathrm{D}}}{\partial \mathrm{~V}_{\mathrm{GS}}}\right|_{V=V_{0}} & \mathrm{y}_{22}=\left.\frac{\partial \mathrm{I}_{\mathrm{D}}}{\partial \mathrm{~V}_{\mathrm{DS}}}\right|_{V=V_{0}}
\end{array}
$$

Small Signal Model of MOSFET

$$
\begin{gathered}
I_{G}=0 \\
I_{o}=\mu C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
\end{gathered}
$$

Small-signal model:

$$
\begin{aligned}
& y_{n 1}=\left.\quad \frac{\partial \mathrm{I}_{\mathrm{o}}}{\partial \mathrm{~V}_{\text {os }}}\right|_{V=v_{0}}=? \\
& \mathrm{y}_{12}=\left.\frac{\partial \mathrm{I}_{\mathrm{G}}}{\partial \mathrm{~V}_{\mathrm{DS}}}\right|_{\mathrm{V}=\mathrm{V}_{\mathrm{o}}}=? \\
& \mathrm{y}_{21}=\frac{\partial \mathrm{I}_{0}}{\left.\partial \mathrm{~V}_{\mathrm{GS}}\right|_{V=v_{0}}}=? \\
& \mathrm{y}_{22}=\left.\frac{\partial \mathrm{I}_{0}}{\partial \mathrm{~V}_{\mathrm{DS}}}\right|_{\mathrm{V}=\mathrm{v}_{\mathrm{o}}}=?
\end{aligned}
$$

Recall: termed the y-parameter model

Small Signal Model of MOSFET

$$
\begin{aligned}
\mathrm{I}_{1}=\mathrm{f}_{1}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right) & \Longleftrightarrow \mathrm{I}_{\mathrm{a}}=0 \\
\mathrm{I}_{2}=\mathrm{f}_{2}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right) & \Longleftrightarrow \mathrm{I}_{0}=\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{os}}\right)
\end{aligned}
$$

Small-signal model:

$$
\begin{aligned}
& \mathrm{y}_{11}=\left.\frac{\partial \mathrm{I}_{\mathrm{G}}}{\partial \mathrm{~V}_{\mathrm{as}}}\right|_{\mathrm{V}=\mathrm{V}_{\mathrm{o}}}=0 \quad \mathrm{y}_{12}=\left.\frac{\partial \mathrm{I}_{\mathrm{G}}}{\partial \mathrm{~V}_{\mathrm{DS}}}\right|_{\mathrm{V}=\nabla_{\mathrm{o}}}=0 \\
& y_{21}=\left.\frac{\partial I_{0}}{\partial V_{\text {os }}}\right|_{V-V_{0}}=\left.2 \mu C_{o x} \frac{W}{2 L}\left(V_{\text {os }}-V_{T}\right)^{1}\left(1+\lambda V_{\text {os }}\right)\right|_{V=V_{0}}=\mu C_{o x} \frac{W}{L}\left(V_{\text {osa }}-V_{T}\right)\left(1+\lambda V_{\text {osa }}\right) \\
& y_{21} \cong \mu C_{o x} \frac{W}{L}\left(V_{\text {Gsa }}-V_{T}\right) \\
& \mathrm{y}_{22}=\left.\frac{\partial \mathrm{I}_{\mathrm{D}}}{\partial \mathrm{~V}_{\mathrm{DS}}}\right|_{\mathrm{V}=\mathrm{V}_{\mathrm{o}}}=\left.\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \lambda\right|_{\mathrm{V}=\mathrm{V}_{\mathrm{o}}} \cong \lambda \mathrm{I}_{\mathrm{Do}}
\end{aligned}
$$

Small Signal Model of MOSFET

Nonlinear model:

$$
\begin{aligned}
& I_{G}=0 \\
& I_{D}=\mu C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
\end{aligned}
$$

Small-signal model:

$$
\begin{array}{cc}
y_{11}=0 & y_{12}=0 \\
y_{22} \cong \mu c_{0 x} \frac{W}{L}\left(v_{\text {oo }}-v_{T}\right) & y_{22} \cong \lambda l_{00}
\end{array}
$$

Small Signal Model of MOSFET

Small-Signal Model of MOSFET

by convention, $\mathrm{y}_{21}=\mathrm{g}_{\mathrm{m}}, \mathrm{y}_{22}=\mathrm{g}_{0}$
$\therefore \quad \mathrm{y}_{21} \cong g_{m}=\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}\left(\mathrm{V}_{\text {GSQ }}-\mathrm{V}_{\mathrm{T}}\right)$

$$
\mathrm{y}_{22}=g_{o} \cong \lambda \|_{\mathrm{Do}}
$$

(y-parameter model)

still y-parameter model
Note: g_{0} vanishes when $\lambda=0$

Small Signal Model of MOSFET Saturation Region Summary

Nonlinear model:

$$
\left\{\begin{array}{l}
I_{G}=0 \\
I_{o}=\mu C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{o s}\right)
\end{array}\right.
$$

Small-signal model:

$$
\left\{\begin{array}{l}
\boldsymbol{i}_{G}=y_{11} \boldsymbol{v}_{G S}+y_{12} \boldsymbol{v}_{D S}=0 \\
\boldsymbol{i}_{D}=y_{21} \boldsymbol{v}_{G S}+y_{22} \boldsymbol{v}_{D S E}
\end{array}\right.
$$

$$
\begin{array}{cl}
\mathrm{y}_{11}=0 & \mathrm{y}_{12}=0 \\
\mathrm{y}_{21}=g_{m 1} \cong \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{oso}}-\mathrm{V}_{\mathrm{T}}\right) & \mathrm{y}_{22}=g_{0} \cong \lambda l_{\mathrm{DO}}
\end{array}
$$

Small-Signal Model of MOSFET

Alternate equivalent expressions for g_{m} :

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{oo}}=\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{Gsa}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{osa}}\right) \cong \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\text {Gsa }}-\mathrm{V}_{T}\right)^{2} \\
& g_{m}=\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\text {osa }}-\mathrm{V}_{\mathrm{T}}\right) \\
& g_{m}=\sqrt{2 \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}} \cdot \sqrt{l_{\mathrm{oo}}} \\
& g_{m}=\frac{2 I_{o p}}{V_{\text {Gsa }} V_{T}}
\end{aligned}
$$

Consider again:

Small-signal analysis example

$$
A_{v}=\frac{2 I_{00} R}{\left[V_{s s}+V_{T}\right]}
$$

Derived for $\lambda=0 \quad$ (equivalently $g_{0}=0$)

$$
\mathrm{I}_{0}=\mu \mathrm{C}_{\text {ox }} \frac{\mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\text {os }}-\mathrm{V}_{T}\right)^{2}
$$

Recall the derivation was very tedious and time consuming!

ss circuit

Consider again:

Small-signal analysis example

This gain is expressed in terms of small-signal model parameters
For $\lambda=0, g_{o}=\lambda_{D Q}=0$

$$
\begin{aligned}
& A_{v}=\frac{V_{o o r r}}{V_{\mathrm{N}}}=-g_{m} R \\
& \text { but } \\
& g_{m}=\frac{2 I_{\text {oo }}}{V_{\text {oiq }}-V_{r}} \quad \mathrm{~V}_{\mathrm{GSQ}}=-V_{\mathrm{SS}}
\end{aligned}
$$

thus

$$
A_{v}=\frac{2 I_{00} R}{\left[V_{s s}+V_{T}\right]}
$$

Consider again:

Small-signal analysis example

$$
A_{v}=\frac{V_{\text {our }}}{V_{I N}}=-\frac{g_{m}}{g_{o}+1 / R}
$$

For $\lambda=0, \quad g_{\mathrm{O}}=\lambda \mathrm{I}_{\mathrm{DQ}}=0$

$$
A_{v}=\frac{2 I_{\mathrm{DQ}} R}{\left[V_{s s}+V_{T}\right]}
$$

- Same expression as derived before !
- More accurate gain can be obtained if λ effects are included and does not significantly increase complexity of small-signal analysis

Small Signal Model of BJT

3-terminal device

Forward Active Model:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{c}}=\mathrm{J}_{\mathrm{S}} \mathrm{~A}_{\mathrm{E}} \mathrm{E}_{\mathrm{V}}^{\frac{\mathrm{V}_{\mathrm{E}}}{\mathrm{~V}}}\left(1+\frac{\mathrm{V}_{\mathrm{CE}}}{\mathrm{~V}_{\mathrm{AF}}}\right) \\
& I_{B}=\frac{J_{S} A_{E}}{\beta} e^{\frac{V_{B E}}{V_{t}}}
\end{aligned}
$$

- Usually operated in Forward Active Region when small-signal model is needed
- Will develop small-signal model in Forward Active Region

Small Signal Model of BJT

Nonlinear model:

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{f}_{1}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right) \\
& \mathrm{I}_{2}=\mathrm{f}_{2}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right)
\end{aligned}
$$

$$
\Longleftrightarrow I_{B}=\frac{\mathbf{J}_{S} A_{E}}{\beta} e^{\frac{V_{B E}}{V_{t}}}
$$

$$
\Longleftrightarrow I_{C}=J_{S} A_{E} e^{\frac{V_{E E}}{V_{\mathrm{E}}}}\left(1+\frac{\mathrm{V}_{\mathrm{CE}}}{\mathrm{~V}_{\mathrm{AF}}}\right)
$$

Small-signal model:

$$
\begin{aligned}
& \boldsymbol{i}_{B}=y_{11} \boldsymbol{v}_{B E}+y_{12} \boldsymbol{v}_{C E} \\
& \boldsymbol{i}_{c}=y_{21} \boldsymbol{v}_{B E}+y_{22} \boldsymbol{v}_{C E}
\end{aligned}
$$

$$
\mathrm{y}_{\mathrm{ij}}=\left.\frac{\partial \mathrm{f}_{\mathrm{i}}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right)}{\partial \mathrm{V}_{\mathrm{j}}}\right|_{\mathrm{V}=\mathrm{V}_{0}}
$$

y-parameter model

$$
\begin{array}{ll}
\mathrm{y}_{11}=g_{\pi}=\left.\frac{\partial \mathrm{I}}{\partial \mathrm{~V}_{\mathrm{BE}}}\right|_{V=V_{0}} & \mathrm{y}_{12}=\left.\frac{\partial \mathrm{I}_{\mathrm{B}}}{\partial \mathrm{~V}_{\mathrm{CE}}}\right|_{\mathrm{V}=\mathrm{V}_{\mathrm{o}}} \\
\mathrm{y}_{21}=g_{m}=\left.\frac{\partial \mathrm{I}_{\mathrm{c}}}{\partial \mathrm{~V}_{\mathrm{BE}}}\right|_{\mathrm{V}=V_{0}} & \mathrm{y}_{22}=g_{o}=\left.\frac{\partial \mathrm{I}_{\mathrm{c}}}{\partial \mathrm{~V}_{\mathrm{CE}}}\right|_{\mathrm{V}=\mathrm{V}_{0}}
\end{array}
$$

Note: g_{m}, g_{π} and g_{o} used for notational consistency with legacy terminology

Small Signal Model of BJT

Nonlinear model:

Small-signal model:

$$
\begin{aligned}
& I_{B}=\frac{J_{S} A_{E}}{\beta} e^{\frac{V_{E E}}{V_{t}}} \\
& I_{C}=J_{S} A_{E} e^{\frac{V_{E}}{V_{i}}}\left(1+\frac{V_{C E}}{V_{A F}}\right)
\end{aligned}
$$

$$
\mathrm{y}_{n 1}=g_{z}=\frac{\partial g_{\mathrm{g}}}{\left.\partial \mathrm{~V}_{\mathrm{ve}}\right|_{\nu, v_{0}}}=?
$$

$$
\mathrm{y}_{21}=g_{m}=\left.\frac{\partial \mathrm{I}_{\mathrm{c}}}{\partial \mathrm{~V}_{\mathrm{BE}}}\right|_{V=v_{0}}=?
$$

$$
\mathrm{y}_{22}=g_{o}=\left.\frac{\partial \mathrm{I}_{\mathrm{c}}}{\partial \mathrm{~V}_{\mathrm{cE}}}\right|_{V_{-v}}=?
$$

$$
\begin{aligned}
& \boldsymbol{i}_{B}=y_{t \mid} \boldsymbol{v}_{B E}+y_{t z} \boldsymbol{v}_{c k} \\
& \boldsymbol{i}_{c}=y_{21} \boldsymbol{v}_{B E}+y_{22} \boldsymbol{v}_{c E} \\
& y_{i j}=\left.\frac{\partial f_{i}\left(\mathrm{~V}_{1}, \mathrm{~V}_{2}\right)}{\partial \mathrm{V}_{\mathrm{i}}}\right|_{0=\mathrm{v}_{0}} \\
& \mathrm{y}_{12}=\frac{\partial \mathrm{I}_{\mathrm{B}}}{\left.\partial \mathrm{~V}_{\mathrm{cE}}\right|_{V=v_{0}}}=?
\end{aligned}
$$

Nonlinear model:
 Small Signal Model of BJT

$$
\begin{aligned}
& I_{B}=\frac{J_{S} A_{E}}{\beta} e^{\frac{V_{E E}}{V_{I}}} \\
& I_{C}=J_{S} A_{E} e^{\frac{V_{E}}{V_{i}}}\left(1+\frac{V_{C E}}{V_{A F}}\right)
\end{aligned}
$$

Small-signal model:

$$
\mathbf{y}_{12}=\left.\frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathrm{~V}_{\mathrm{CE}}}\right|_{\nabla=\nabla_{0}}=\mathbf{O}
$$

Note: usually prefer to express in terms of I_{CQ}

$$
\begin{aligned}
& \boldsymbol{i}_{B}=y_{11} \boldsymbol{v}_{B E}+y_{12} \boldsymbol{v}_{C E} \\
& \boldsymbol{i}_{c}=y_{21} \boldsymbol{v}_{B E}+y_{22} \boldsymbol{V}_{C E}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y}_{22}=g_{o}=\left.\frac{\partial \mathrm{I}_{\mathrm{c}}}{\partial \mathrm{~V}_{\mathrm{CE}}}\right|_{\mathrm{V}=V_{\mathrm{o}}}=\left.\frac{\mathrm{J}_{\mathrm{S}} \mathrm{~A}_{\mathrm{E}} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{EE}}}{\mathrm{~V}}}}{\mathrm{~V}_{\mathrm{AF}}}\right|_{\mathrm{V}=\mathrm{V}_{\mathrm{o}}} \cong \frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{AF}}}
\end{aligned}
$$

Small Signal Model of BJT

Forward Active Region Summary
Nonlinear model:

Small-signal model:

$$
\left\{\begin{array}{l}
\boldsymbol{i}_{B}=y_{11} \boldsymbol{v}_{B E}+y_{12} \boldsymbol{v}_{C E} \\
\boldsymbol{i}_{c}=y_{21} \boldsymbol{v}_{B E}+y_{22} \boldsymbol{v}_{C E}
\end{array}\right.
$$

$$
\begin{gathered}
\mathrm{y}_{11}=g_{\pi} \cong \frac{\mathrm{I}_{\mathrm{ca}}}{\beta \mathrm{~V}_{t}} \\
\mathbf{y}_{12}=\mathrm{O}
\end{gathered}
$$

$$
\mathrm{y}_{21}=g_{m}=\frac{\mathrm{I}_{\mathrm{co}}}{V_{1}}
$$

$$
\mathrm{y}_{22}=g_{o} \cong \frac{\mathrm{I}_{\mathrm{co}}}{\mathrm{~V}_{\mathrm{AF}}}
$$

Small Signal Model of BJT

$$
\begin{aligned}
& \boldsymbol{i}_{B}=g_{\pi} \boldsymbol{V}_{B E} \\
& \boldsymbol{i}_{c}=g_{\boldsymbol{m}} \boldsymbol{v}_{B E}+g_{o} \boldsymbol{v}_{c z}
\end{aligned}
$$

$$
g_{\pi}=\frac{\mathrm{I}_{\infty}}{\beta V_{t}} \quad g_{m=}=\frac{\mathrm{I}_{c o}}{V_{t}} \quad g_{o}=\frac{\mathrm{I}_{\infty}}{V_{A F}}
$$

y-parameter model using " g " parameter notation

Consider again:

Recall the derivation was very tedious and time consuming!

ss circuit

Neglect $V_{A F}$ effects (i.e. $V_{A F}=\infty$) to be consistent with earlier analysis

$$
g_{o}=\frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{AF}}} \underset{V_{A F}=\infty}{=} 0
$$

$$
\left.\begin{array}{l}
v_{\text {out }}=-g_{m} R v_{\text {BE }} \\
v_{\text {IN }}=v_{\text {BE }}
\end{array}\right\} \quad \mathrm{A}_{\mathrm{V}}=\frac{v_{\text {oUT }}}{v_{\text {IN }}}=-g_{\mathrm{m}} \mathrm{R}
$$

$$
\begin{gathered}
g_{\mathrm{m}}=\frac{I_{\mathrm{CQ}}}{V_{\mathrm{t}}} \\
\mathrm{~A}_{\mathrm{V}}=-\frac{I_{\mathrm{CQ}} R}{V_{\mathrm{t}}}
\end{gathered}
$$

Note this is identical to what was obtained with the direct nonlinear analysis

Small Signal BJT Model - alternate representation

Observe :

$$
\begin{aligned}
& g_{\pi} \boldsymbol{u}_{b e}=\boldsymbol{i}_{b} \\
& g_{\mathrm{m}} \boldsymbol{u}_{b e}=\boldsymbol{i}_{b} \frac{g_{\mathrm{m}}}{g_{\pi}}
\end{aligned}
$$

$$
g_{\mathrm{m}} v_{b e}=\beta i_{i}
$$

$$
\frac{g_{m}}{g_{\pi}}=\frac{\left[\frac{I_{Q}}{V_{t}}\right]}{\left[\frac{I_{Q}}{\beta V_{t}}\right]}=\beta
$$

Can replace the voltage dependent current source with a current dependent current source

Small Signal BJT Model - alternate representation

Alternate equivalent small signal model

$$
\mathrm{g}_{\pi}=\frac{\mathrm{I}_{\mathrm{CQ}}}{\beta \mathrm{~V}_{\mathrm{t}}} \quad \mathrm{~g}_{o} \cong \frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{AF}}}
$$

Small-Signal Model Representations

(3-terminal network - also relevant with 4-terminal networks)

- Have developed small-signal models for the MOSFET and BJT
- Models have been based upon arbitrary assumption that $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ are independent variables
- Models are y-parameter models expressed in terms of " g " parameters
- Have already seen some alternatives for "parameter" definitions in these models
- Alternative representations are sometimes used

Small-Signal Model Representations

The good, the bad, and the unnecessary !! what we have developed:

The hybrid parameters:

Independent parameters

Small-Signal Model Representations

The z-parameters

The ABCD parameters:

Small-Signal Model Representations

Amplifier parameters

- Alternate two-port characterization but not expressed in terms of independent and dependent parameters
- Widely used notation when designing amplifiers

Small-Signal Model Representations

The S-parameters

The T parameters:

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

- Equivalent circuits often given for each representation
- All provide identical characterization
- Easy to move from any one to another

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

Conversions Between $S, Z, Y, h, A B C D$, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances
DA Frickey - IEEE Transactions on microwave theory and ..., 1994 - ieeexplore.ieee.org
... 2. FEBRUARY 1994 TABLE m EQUATIONS FOR THE CONVERSION BETWEEN s PARAMEIERS
 between the various common 2-port parameters, $\mathbf{Z}, \mathbf{Y}, \mathrm{h}, \mathbf{A B C D}, \mathbf{S}$, and $T \ldots$ which are valid for complex source and load impedances"

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

Conversions Between $S, Z, Y, h, A B C D$, and T Parameters which are Valid for Complex Source and Load Impedances

Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances
DA Frickey - IEEE Transactions on microwave theory and ..., 1994 - ieeexplore.ieee.org
This paper provides tables which contain the conversion between the various common two-
port parameters, Z, Y, H, ABCD, S, and T. The conversions are valid for complex normalizing impedances. An example is provided which verifies the conversions to and from S
is 90 Cited by 370 Related articles All 5 versions

[^0]
Small-Signal Model Representations

The good, the bad, and the unnecessary !!

Conversions Between $S, Z, Y, h, A B C D$, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

Conversions between $S, Z, Y, H, A B C D$, and T parameters which are valid for complex source and load impedances
DA Frickey - IEEE Transactions on Microwave Theory and ..., 1994-osti.gov
Conversions between $\mathrm{S}, \mathrm{Z}, \mathrm{Y}, \mathrm{h}, \mathrm{ABCD}$, and T parameters which are valid for complex source and load impedances This paper provides tables which contain the conversion hatwoon the various common two-port parameters, Z, Y, h, ABCD, S, and T. The ... Cited by 226 Related articles All 6 versions Cite Save More
As of Oct 16, 2015

Comments on" Conversions between S, Z, Y, h, ABCD, and T parameters
nist.gov [PDF] which are valid for complex source and load impedances"[with reply]
. DF Williams, DA Frickey - Microwave Theory and ..., 1995 - ieeexplore.ieee.org in. DF Williams, DA Frickey - -Microwave Theory and 1995 - leeexplore. .ieee.org In his recent paper,'Frickey presents formulas for conversions between various network
matrices. Four of these matrices (Z, Y, h, and $A B C D$) relate voltages and currents at the matrices. Four of these matrices ($Z, Y, \mathrm{~h}$, and ABCD) relate voitages and currents at the
nortc. the onther two (S and 7 ') relate wave quantities. These relationships depend on the ... Cited by 30 Rela ed articles All 3 versions Cite Save

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

Conversions Between $S, Z, Y, h, A B C D$, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

[^1]
Active Device Model Summary

Diodes
Bransistors

What are the simplified dc equivalent models?

Active Device Model Summary

What are the simplified dc equivalent models? dc equivalent

Simplified

Simplified

Example: Determine the small signal voltage gain $A_{V}=v_{\text {OUT }} / v_{\mathbb{N}}$. Assume M_{1} and M_{2} are operating in the saturation region and that $\lambda=0$

Example: Determine the small signal voltage gain $\mathrm{A}_{\mathrm{v}}=\boldsymbol{v}_{\mathrm{OUT}} / \boldsymbol{v}_{\mathbb{N}}$. Assume M_{1} and M_{2} are operating in the saturation region and that $\lambda \neq 0$

- Analysis is straightforward but a bit tedious
- A_{V} is very large and would go to ∞ if g_{01} and g_{02} were both 0
- Will look at how big this gain really is later

Stay Safe and Stay Healthy !

End of Lecture 26

[^0]: As of Mar 6, 2018

[^1]: Conversions between $\mathrm{S}, \mathrm{Z}, \mathrm{Y}, \mathrm{H}, \mathrm{ABCD}$, and T parameters which are valid for complex source and
 load impedances
 DA Frickey - ... theory and techniques, IEEE Transactions on, 1994 - ieeexplore.ieee.org
 Abstract This paper provides tables which contain the conversion between the various
 common two-port parameters, Z, Y, H, ABCD, S, and T. The conversions are valid for
 complov normalizing impedances. An example is provided which verifies the conversions..
 Cited by 149 lated articles All 5 versions Cite
 As of Oct 28, 2013

